Building Neural Networks from Scratch
Part 1

Luca WB

2026-01-08

10

11

12

Table of contents

0.1 Brief summary 2
0.2 Basic knowledge of derivative oo oo 2
0.3 How to estimate gradients L oo 5
0.4 Lets start making an AutoGrad 6

0.1 Brief summary

The objective from this page to undestand how to implement a neural network from scratch
without any external libraries, this page consider that you already have some knwlodge of
Artificial Neural Networks. The main reason for this is just to make more compreensible
the black box of Neural Networks. So, to this project, the main resource (but not the
unique) are the series of videos from Andrej Karpathy. In this first part, I will cover how
to implement AutoGrad for do backpropagation. At the end of this post, yo will cable of
create MLPs without any external library.

0.2 Basic knowledge of derivative

So, from the start, to make sense at how an NN train and learn something, you first need
a very good understanding around the meaning of derivative operations. A derivative is an
operation that gives us a formula that describes the slope of a function as it modifies a vari-
able, but for out prupose, we will only work with functions that generate linear derivatives.
Thus, for the function $ f(x) = 3x"2 - 4x + 5 §, see the graph bellow.

import numpy as np
import matplotlib.pyplot as plt

Define the function
def f(x):
return 3*x**x2 — 4xx + 5

Generate x values
x = np.linspace(-5, 5, 400)
f(x)

<
]

Plot

https://www.youtube.com/@AndrejKarpathy

13

14

15

16

17

18

19

20

21

22

plt.
.plot(x, y, label=r"$f(x) = 3x72 - 4x + 5$")

plt

plt.
plt.
plt.
plt.
.title("Graph of the function")

plt

plt.
.grid(True)

plt

plt.

This function is easy to undestand and derivate analytic, the derivate is
Plotting both function and his derivate, we get the graphic bellow.

figure(figsize=(6, 4))

axhline (0, color="black", linewidth=0.5)
axvline (0, color="black", linewidth=0.5)
xlabel("x")

ylabel("f(x)")

legend ()

show ()

Graph of the function

100 A —— fix)=3x2—-4x+5

80 A

60 A

40 A

20 A

import numpy as np
import matplotlib.pyplot as plt

Define the function
def f(x):

return 3*x**2 - 4%x + 5

def df (x):

return 6*x - 4

df
d

@) = 6z — 4.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Generate x values

x = np.linspace(-5, 5, 400)
y = £(x)

y2 = df (x)

Plot

plt.figure(figsize=(6, 4))

plt.plot(x, y, label=r"$f(x) = 3x72 - 4x + 5%")
plt.plot(x, y2, label=r"$df(x) = 6xx - 4$")
plt.axhline(0, color="black", linewidth=0.5)
plt.axvline(0, color="black", linewidth=0.5)
plt.xlabel("x")

plt.ylabel("f(x)")

plt.title("Graph of the function")
plt.legend ()

plt.grid(True)

plt.show()

Graph of the function

100 - —— fix)=3x2—4x+5

dfix)=6*x—4
80

60 -

40 A

f(x)

20 A

—20 1

_40 T T T T

The basic idea is that with we want to minimize the value of a function (main objective in
deep learning), we just need to see the value of a derivative in some point A, that give us all
the information we need to go to the minimum spot. Just do some numerical exemple, in
the graph above, note that the minimum spot is in som evalue around 0 and 2, more close
to 0 (precisaly 2/3), so, just pick some rondom number, like -2, the value of f(z) with -2

is 25, and the derivative is -16. The number -16 represent the rate at which the function
varies for each increase in the value of x at that point in specific. So, with we increse the
value of X a little bit, we can lower the value of X, so probably, the f(—1.999) give us a
lower value than f(—2)

def f(x):
return 3*x**x2 - 4xx + 5

print ("f(-2)=",f(-2))
print("£(-1.999)=",f(-1.999))

f(-2)= 25
£(-1.999)= 24.984003

This is the general idea of how we can minimize some function, that is also the main idea
of how gradient descendent works.

0.3 How to estimate gradients

In general, to make an framework for working with nn, its just an AutoGrad (a tool that
can do diferatiation automatically) and some fancy stuff for make more pratical.

For start, lets make things the most simple for now. Our goal its make an class that can calc
for us all the gradietns (its the same as an derivative) from the function L = —2-((2-3)+10).
But we dont are confortable derivate something with just numbers, so lets consider in this
way the function:

a =2
b =-3.0
c = 10
f =-2
e = axb
d=e +c
L=dxf
IL

-8.0

Just to make clear, the knowledge that we want with this, is ow much changes in the final
result, increase the values of any of the variables a little To get the gradients, we can use an
aproximate that consists in adding a very small number A is all of the values, than subtract
the new with the original, and divide by the h. The code bellow shows how to do this with
the variable a:

10

11

12

13

14

15

16

17

18

19

20

a =2

b =-3.0

c =10
f =-2

e = axb
d=e +c
L=d=xf£
h = 0.0001
a=2+h
b =-3.0

c =10
f =-2

e = ax*b
d=e +c
L2 d x f

print(£f"L(2) = {L}")
print(f"L({a}) = {L2}")

print (£"The slope/gradient: {(L2 - L)/h}")

L(2) = -8.0
L(2.0001) = -7.999399999999998
The slope/gradient: 6.000000000021544

We will not use this method to create our autograd, but we can use this to verify with our
gradients are right.

0.4 Lets start making an AutoGrad

The basic idea of the AutoGrad we will make is make some very simple nodes, that represent
the number in our calculation and will track all the last two nodes that make him. Basically,
in L =-2-((2-3)+10), we will consider that a node can only save on number, like in the
code represantation

a =2

b =-3.0
c =10

f =-2
e = ax*b
d=e+c
L=d=xf¢£

So, for start, lets make the basic of our class:

class Value:
def __init__(self, data, _children=(), _op=""):
self.data = data
self.grad = O # All nodes will start with no frad, becouse we dont know what is th
self. prev = set(_children) # Dont worry about this for know, we only use set for
self._op = _op

This is just for us visualize our class
def __repr__(self):
return f"Value(data={self.data})"

So with this class, we can create some Value’s, but we cant use them for anything, so lets
make some operations

class Value:
def __init__(self, data, _children=(), _op=""):
self.data = data
self.grad = O
self. _prev = set(_children)
self. _op = _op

This is just for us visualize our class
def __repr__(self):

10

11

12

13

14

15

16

17

18

19

And with this simples class, we can know calc our formula (not the gradients yet)

H Qa0 H o o

return f"Value(data={self.datal})"

This make that we can add to Value's
def __add__(self, other):
Value(self.data + other.data,
return out

out =

def _ mul_ (self, other):
out = Value(self.data * other.data,
return out

Value(2.)
Value(-3.0)
Value(10.)
Value(-2)

a *b

e +c

d x f

(self,other),

(self,other), "x")

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Value(data=-8.0)

Bellow, a just make an graph to visualize the operations in an graph, The question is, how

we can get the gradients from d and f7
from graphviz import Digraph

def trace(root):
builds a set of all nodes and edges in a graph
nodes, edges = set(), set()
def build(v):
if v not in nodes:
nodes.add (v)
for child in v._prev:
edges.add((child, v))
build(child)
build(root)
return nodes, edges

def draw_dot(root):
dot = Digraph(format='svg', graph_attr={'rankdir':

nodes, edges = trace(root)
for n in nodes:
uid = str(id(n))

for any value in the graph, create a rectangular ('record') node for it
dot.node(name = uid, label = "{ data %.4f | grad %.4f }" 7 (n.data, n.grad), shape='re

if n._op:

if this value is a result of some operation, create an op node for it

dot.node(name = uid + n._op, label = n._op)
and connect this node to it
dot.edge(uid + n._op, uid)

for nl, n2 in edges:
connect nl to the op node of n2
dot.edge(str(id(nl1)), str(id(n2)) + n2._op)

return dot

draw_dot (L)

'LR'}) # LR = left to right

| data -2.0000 | grad 0.0000 l

| data 10.0000 | grad 0.0000 |

::®—-| data -8.0000

| data 2.0000 | grad 0.0000 ::®——| data 4.0000 | grad 0.0000 [
data -6.0000 | grad 0.0000 [

| data -3.0000 | grad 0.0000 [

	Brief summary
	Basic knowledge of derivative
	How to estimate gradients
	Lets start making an AutoGrad

