10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

Table of contents

from sklearn.datasets import load_diabetes

# 1. Carrega os dados ja separados em X (variaveis) e y (alvo)

# scaled=False garante que venham os nimeros reais (idade, pressdo, etc)

X_numpy, y_numpy = load_diabetes(return_X_y=True, scaled=False)

# 2. Converte de Array do Numpy para Listas nativas do Python

dataset_X
dataset_y

X_numpy.tolist()
y_numpy.tolist()

class Value:

def __init__(self, data, _children=(), _op=""):

self.data = data

self.grad = O

self. backward = lambda: None
self. prev = set(_children)
self._op = _op

def __repr__(self):
return f"Value(data={self.datal})"

def __add__(self, other):

other = other if isinstance(other, Value) else Value(other)

out = Value(self.data + other.data,

def _backward():
self.grad += 1. * out.grad
other.grad += 1. * out.grad

out._backward = _backward
return out
def __radd__(self, other):

return self + other

def exp(self):
x = self.data

(self,other),

l+l)



28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

def

def

def

def

def

def

def

out = Value(math.exp(x), (self, ), "exp")

def backward():

self.grad += out.data * out.grad
out._backward = _backward
return out

_ _rmul__(self, other):
return self * other

__truediv__(self, other):
return self * other**-1

__pow__(self, other):
assert isinstance(other, (int,float))

out = Value(self.data**other, (self,),

def _backward():

(f"xx{other}"))

self.grad += (other)*(self.data**(other-1))*out.grad

out._backward = _backward
return out

__neg__(self):
return self*-1

__sub__(self, other):
return self + (-other)

__mul__(self, other):

other = other if isinstance(other, Value) else Value(other)

out = Value(self.data * other.data, (self, other), "x")

def _backward():

self.grad += other.data * out.grad
other.grad += self.data * out.grad

out._backward = _backward

return out

tahn(self):
n = self.data

t = (math.exp(2*n)-1) / (math.exp(2*n)+1)

out = Value(t, (self, ), "tahn")

def backward():



73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

def

e +

=d*

B0 HQ 0o o0 o e
]

self.grad += (1 - t**2) * out.grad

out._backward = _backward
return out

backward (self) :
self.grad = 1
# Montar ordem topologica
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append (v)
build_topo(self)

for node in reversed(topo):
node. backward()

= Value(2.0)
= Value(-3.0)
= Value(10.)
= axb

C

= Value(-2)

f

Value(data=-8.0)

class Neuron:

def

def

__init__(self, input_num):

self.w
self.b

__call__(self,x):
act

act.tahn()
return out

out

[Value(random.uniform(-1,1)) for
Value (random.uniform(-1,1))

in range (input_num)]

sum((wi*xi for wi,xi in zip(self.w, x)), self.b)



11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

1

def paramerters(self):
return self.w + [self.b]

class Layer:
def __init__(self, input_num, output_num):
self .neurons = [Neuron(input_num) for _ in range(output_num)]

def call (self, x):
outs = [n(x) for n in self.neurons]
return outs[0] if len(outs)==1 else outs

def parameters(self):
out = []
for neuron in self.neurons:
out.extend(neuron.paramerters())
return out

class MLP:
def __init__(self, input_num, output_nums):
sz = [input_num] + output_nums
self.layers = [Layer(sz[i], sz[i+1]) for i in range(len(output_nums))]

def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x

def parameters(self):
out = []
for layer in self.layers:
out.extend(layer.parameters())
return out

y_pred

[Value(data=-0.8415627312965999),
Value(data=-0.8416194345012991),
Value (data=-0.05490668837286004) ,
Value (data=-0.00322658100945949) ,
Value(data=-0.8416194652573291),
Value (data=0.0007289701558785097) ,
Value (data=0.590527223921252) ,
Value (data=-0.8219020753186649),
Value(data=0.752305549190352) ,



Value (data=0.23634884911671442) ,
Value(data=0.2324369999890968) ,
Value (data=-0.3667103294682982) ,
Value (data=-0.0634004663894011),
Value(data=-0.8416194659720974) ,
Value (data=0.23260575920595203) ,
Value(data=0.5111901974753233),
Value (data=0.6789648937094968) ,
Value(data=-0.5820612124669666) ,
Value (data=0.7523055491842697) ,
Value(data=0.7523055481961325) ,
Value (data=0.7134230126114081),
Value (data=-0.4338715956237026) ,
Value (data=-0.6284457596711006) ,
Value (data=-0.3690893360127478) ,
Value(data=-0.09381265348574475)
Value (data=0.87271323627814) ,
Value(data=-0.8416194651298385) ,
Value (data=-0.9465516580056076) ,
Value(data=0.6439211564975865) ,
Value (data=-0.3132323456409167) ,
Value(data=-0.6248843771202373),
Value (data=-0.059336119312374674) ,
Value(data=0.044008110571278354) ,
Value (data=0.44431944527176626) ,
Value (data=-0.024021510427910762) ,
Value (data=-0.8389613990859471) ,
Value (data=-0.7017444187863259) ,
Value (data=-0.7523382655692067) ,
Value (data=0.752303815305045) ,
Value(data=0.23616106070457457) ,
Value (data=0.18313362989175042) ,
Value(data=-0.19748526834772273)
Value (data=-0.0840158967698916) ,
Value(data=0.7523055491899738) ,
Value (data=0.7523024221780781) ,
Value (data=0.09969676087824433) ,
Value (data=-0.7523383153911842),
Value (data=0.7523055491903367) ,
Value(data=-0.8416194648385672) ,
Value (data=-0.31319871037159847)
Value(data=-0.6743053204039691) ,
Value (data=-0.36038983638177446)
Value(data=0.7146308588140945) ,
Value (data=0.6924538940391899) ,
Value (data=0.23539476271963145) ,

-

-

-

-



Value(data=-0.8416194659719878),
Value(data=0.7091475440192085) ,
Value(data=0.752305549190352) ,
Value(data=0.749567585937358) ,
Value (data=0.6850527027384172),
Value (data=-0.0028793061189391336) ,
Value (data=-0.18004229028886187),
Value (data=-0.3603898579532061) ,
Value(data=0.5157441055952386) ,
Value(data=0.6703340716478448) ,
Value(data=0.7523055491881069) ,
Value(data=-0.8416194659720978) ,
Value(data=-0.093791992022148),
Value(data=0.18510086987575336) ,
Value(data=-0.6521854896346359) ,
Value (data=-0.004256640642177963) ,
Value (data=0.024684441678020343),
Value(data=0.18511176825466774) ,
Value (data=0.7523055490943796) ,
Value(data=-0.1976408483882895) ,
Value(data=-0.36962425337342913),
Value(data=-0.6737516431771209),
Value (data=-0.43469453775631567),
Value(data=-0.8416194651837271) ,
Value (data=-0.8427683133504643) ,
Value(data=-0.19747056174811134),
Value(data=-0.0788405819523186) ,
Value (data=-0.06551384837024385) ,
Value (data=-0.31419026668488) ,
Value (data=-0.6743022098606871) ,
Value (data=-0.003208504052582923) ,
Value (data=0.5661926082228022) ,
Value(data=0.5635018667693333),
Value(data=-0.6767795537425427) ,
Value(data=-0.8415986549635354) ,
Value(data=-0.841619465967908) ,
Value (data=0.7523055488024072) ,
Value (data=-0.23694711795071086) ,
Value (data=-0.5584860595760806) ,
Value (data=-0.09285084385372601),
Value(data=0.003024127224643731),
Value(data=0.5912616232171111),
Value(data=0.752305549190352) ,
Value(data=0.014517020279806161) ,
Value(data=0.7523055491903511),
Value (data=0.23558694368662905) ,



Value (data=0.7523031105656448) ,
Value (data=-0.025508027330395006) ,
Value (data=-0.05048733355456281) ,
Value (data=-0.0028240711731751644) ,
Value (data=-0.7513830942301281),
Value (data=0.29267648572453403) ,
Value (data=-0.7522903404138543) ,
Value (data=-0.8373894531624996) ,
Value (data=0.7466691994770996) ,
Value (data=-0.8416194659720978) ,
Value (data=-0.8029218382079596) ,
Value (data=-0.3133435335209921) ,
Value (data=0.509902420486061) ,
Value (data=0.18500698487244632) ,
Value (data=0.5113379799054405) ,
Value (data=0.583687280279636) ,
Value (data=-0.8416194659720978) ,
Value (data=-0.003208612058276315) ,
Value (data=0.1969726245227751) ,
Value(data=-0.474113301816531),
Value (data=-0.8416194658797662) ,
Value (data=0.8691837171743972),
Value (data=0.18757281543159693) ,
Value(data=0.6725515495111626) ,
Value (data=0.720881763004354) ,
Value (data=0.752305549190352) ,
Value(data=-0.4741132617990162),
Value (data=0.23615955854604265) ,
Value (data=-0.08444515269806618) ,
Value (data=0.7523054556296074) ,
Value (data=0.5097564822471878) ,
Value (data=-0.8416194637674294) ,
Value(data=-0.0593551394115986) ,
Value (data=0.7485459777087161) ,
Value(data=-0.09381114271535491) ,
Value (data=0.752305549190352) ,
Value (data=-0.15862722575148513),
Value (data=-0.8416194657442588) ,
Value (data=-0.7607994583074659) ,
Value(data=-0.4741115229153861),
Value (data=-0.22273378886756315) ,
Value (data=-0.8416194679359383),
Value (data=-0.8601828662825803) ,
Value (data=0.752305549190352) ,
Value (data=-0.7509124087377687) ,
Value(data=-0.16629515667842584) ,



Value (data=-0.7086078963308614) ,
Value(data=0.7523048542371348) ,
Value (data=0.34742185870513487) ,
Value (data=-0.3193211085607453) ,
Value (data=-0.36039493366096437) ,
Value(data=0.24977974799348493),
Value(data=-0.24709125210916782),
Value (data=-0.841619465962903) ,
Value(data=-0.8416194659720978) ,
Value (data=-0.5584355129009783) ,
Value (data=0.709863805850473) ,
Value (data=-0.8416194659720978) ,
Value (data=0.46973202614222553) ,
Value (data=-0.08900547101921032),
Value (data=0.7670456716332431) ,
Value (data=0.7515276671006267) ,
Value (data=0.7146241315324272) ,
Value(data=-0.8416194659719851) ,
Value (data=-0.0974290471886943) ,
Value(data=-0.8415996817577456) ,
Value (data=-0.6743022441884394) ,
Value(data=0.23654287597639276) ,
Value (data=-0.8416142482394962) ,
Value (data=0.23608454287752165) ,
Value (data=-0.8416194652693524) ,
Value (data=0.7523055491862759) ,
Value (data=-0.49769929274007324) ,
Value (data=-0.05052105471629754) ,
Value (data=0.8737993797450273) ,
Value (data=0.5113379717328306) ,
Value (data=-0.3603898369863178) ,
Value (data=0.5105110298613881) ,
Value (data=0.1784529165872902) ,
Value (data=-0.003208485355548673) ,
Value(data=-0.367503058354979) ,
Value (data=0.7273686645401503) ,
Value (data=0.7346547973173071) ,
Value (data=-0.0032084126852894965) ,
Value (data=-0.5584471691751651) ,
Value (data=0.7523055491903519),
Value (data=-0.8416194659718954) ,
Value (data=0.23408588765246047) ,
Value (data=0.7199877300953721) ,
Value (data=-0.5586151821859324) ,
Value (data=-0.003209461544153728) ,
Value (data=0.752305549190351),



Value (data=0.4241575912072729) ,
Value (data=-0.9499326872627337) ,
Value (data=0.5632522783444234) ,
Value (data=-0.8416194659720904) ,
Value (data=-0.5503305526023017) ,
Value (data=-0.5074614796773629) ,
Value(data=-0.3132303043756266) ,
Value (data=0.5496188285813405) ,
Value (data=0.23263946374591082) ,
Value (data=0.7523055457411794) ,
Value(data=0.7159129564402817),
Value (data=-0.8267128751522281) ,
Value(data=-0.5355832829842535) ,
Value (data=-0.8416194659720981) ,
Value (data=-0.8416194639932238) ,
Value (data=0.019937665655614032) ,
Value (data=-0.006744363230917061) ,
Value (data=-0.36039421706283054) ,
Value (data=-0.0032084906895803508) ,
Value (data=0.7513079966756456) ,
Value (data=-0.8416194659720978) ,
Value(data=0.5630762184358562) ,
Value (data=0.08561947076335483) ,
Value (data=-0.5584860585809881) ,
Value (data=0.6104858532595809) ,
Value (data=0.752305549190352) ,
Value(data=-0.31293002576889695) ,
Value (data=0.5632525450904063) ,
Value(data=-0.4228627180439916) ,
Value (data=0.23260734140768688) ,
Value (data=0.2369460786920258) ,
Value (data=-0.31176538621943306) ,
Value (data=-0.49569335724978925) ,
Value (data=0.6221369202591238) ,
Value(data=0.5656596768737575) ,
Value (data=-0.8416194659720978) ,
Value (data=-0.8416194659720502) ,
Value(data=-0.8411933204770886) ,
Value (data=0.18511166354523823) ,
Value(data=-0.8416185878942044) ,
Value (data=-0.8415418931677148) ,
Value(data=0.6206112780185206) ,
Value (data=-0.8416194659720978) ,
Value(data=0.18513186345033525),
Value (data=0.1892236997428502) ,
Value (data=-0.3605192634077059) ,



Value (data=-0.6021811647630487) ,
Value (data=-0.841618396782954) ,
Value (data=-0.6729886456646893) ,
Value(data=0.5647714271902672),
Value(data=0.7523055491903476) ,
Value(data=0.6787356784188849),
Value(data=-0.3725574548062828) ,
Value (data=-0.8411498997358485) ,
Value(data=0.7742502701844043),
Value (data=0.2326742426402757) ,
Value(data=-0.5584860616637264) ,
Value (data=-0.9429067064175995) ,
Value (data=-0.5584826837518017),
Value (data=0.23615983514194652) ,
Value(data=0.7516779472527761) ,
Value(data=0.5105891499633911),
Value(data=-0.6743010193676416) ,
Value (data=0.5632527693303969) ,
Value (data=0.034105614509376436) ,
Value(data=-0.05114026955503507) ,
Value (data=0.752316275694912) ,
Value(data=-0.7191224692779549) ,
Value (data=0.7523055486284501) ,
Value (data=-0.9370486838321045) ,
Value (data=-0.058582436805900674) ,
Value(data=0.4862353382319841),
Value(data=0.6821932430647532) ,
Value(data=-0.3605010533488893) ,
Value(data=-0.4538413125592747) ,
Value (data=-0.8416194659720978) ,
Value(data=0.46101563449175254) ,
Value (data=0.7146017960954045) ,
Value(data=-0.9400364733812405) ,
Value (data=0.7019553365951331),
Value(data=0.7522109563258358) ,
Value (data=0.1851117679104247) ,
Value(data=-0.8411156955114124) ,
Value(data=0.029660301875815785) ,
Value(data=0.2347886298415126) ,
Value(data=0.23362576319234912) ,
Value (data=0.3590145540058608) ,
Value (data=0.6176855000514068) ,
Value (data=0.029653689586272233) ,
Value(data=-0.19746838644820003) ,
Value (data=0.36409827903463715) ,
Value(data=-0.057647468059235256) ,



Value(data=0.7523055491903436) ,
Value(data=0.622168645001492) ,
Value (data=-0.21387125809352206) ,
Value (data=0.21988333112652295) ,
Value(data=0.7523055491879931),
Value(data=-0.7511737149303823),
Value(data=-0.3603903247121275),
Value(data=0.7523055491903518),
Value(data=-0.6563797387450829) ,
Value (data=0.23520627952852413) ,
Value (data=0.23260570229665228) ,
Value(data=0.7032756993398123),
Value(data=0.5066481831131525) ,
Value (data=-0.2404017901213023),
Value (data=0.5632540840024651) ,
Value(data=0.5664989819577885) ,
Value(data=0.7519268447824776) ,
Value (data=-0.8367209440642345) ,
Value(data=0.752305549190352) ,
Value (data=0.41524869726648794) ,
Value (data=-0.49922680397243036) ,
Value (data=-0.6686194083308274) ,
Value(data=-0.6742563437093902) ,
Value(data=-0.48551031801585187),
Value(data=0.6777394899537427) ,
Value (data=-0.6128440182158071),
Value (data=0.35939847371983774) ,
Value (data=0.5919714460080509) ,
Value(data=-0.00461969234204162) ,
Value (data=0.7522942521882868) ,

Value (data=-0.041658769425593434),

Value (data=0.752305549190352) ,

Value (data=0.752305549190352) ,

Value (data=0.6634346621592201) ,
Value (data=0.7522891046506945) ,
Value (data=0.5113345029362342) ,
Value (data=0.752305549190352) ,

Value (data=0.10958751060851984) ,
Value (data=0.8540632539687025) ,
Value (data=0.23615980326231642) ,
Value (data=0.7523008240893215) ,
Value(data=-0.8416192132579584) ,
Value (data=-0.8416194761155075) ,
Value(data=-0.4986479816526874) ,
Value (data=-0.8416194659720959) ,
Value(data=-0.5585078805960447) ,

11



Value (data=0.7673342447522788) ,
Value (data=-0.4985204323350121),
Value (data=0.7523054128367977) ,
Value (data=0.716350928127463) ,
Value (data=-0.45039977154037836) ,
Value (data=0.6215254352035466) ,
Value(data=0.7522167943023804) ,
Value (data=-0.4741131608806469) ,
Value (data=-0.9465029851737213),
Value (data=-0.47408927783700056) ,
Value(data=-0.5584952018882203) ,
Value (data=0.23260589843667775) ,
Value(data=-0.05048496976355426) ,
Value (data=-0.7523383154382636) ,
Value (data=-0.9465537677545641) ,
Value (data=-0.5573154083123765) ,
Value (data=0.2326034577814231) ,
Value (data=-0.3603900354816428) ,
Value (data=-0.36039411753335376) ,
Value (data=0.23586925502251227) ,
Value (data=-0.3132323487713915),
Value (data=0.5113379799047896) ,
Value (data=-0.6620153809729447) ,
Value (data=-0.674301800692371) ,
Value (data=0.5684033839912273) ,
Value (data=-0.6488311870577662) ,
Value (data=-0.8387879374129402) ,
Value (data=-0.36690210384676103) ,
Value (data=-0.6326840952371331),
Value (data=-0.5520782971414756) ,
Value (data=-0.003317043198650031) ,
Value (data=0.21270729868614527) ,
Value (data=-0.3165565306168389) ,
Value (data=-0.36038983625028764) ,
Value (data=-0.36039003211639725),
Value (data=-0.8346528350933287) ,
Value (data=-0.8052721511512086) ,
Value (data=0.1201802190955259) ,
Value (data=-0.10363564628486345) ,
Value (data=0.7742502723589525) ,
Value (data=0.23615979361871514) ,
Value (data=-0.016514756364055402) ,
Value (data=0.0988431983471681) ,
Value (data=-0.1974410811853431),
Value (data=-0.5108415433129084) ,
Value(data=0.23081492658983743) ,



Value (data=0.640490752005102) ,
Value (data=-0.6742796655069111),
Value (data=0.752305549190352) ,
Value (data=0.7146343383173848) ,
Value(data=0.005717646215201245) ,
Value (data=-0.09405003586902935) ,
Value (data=0.8297055666428749) ,
Value (data=0.5632533264877847) ,
Value (data=0.752305549190352) ,
Value (data=0.7085631722212521) ,
Value(data=-0.7523309403475649) ,
Value (data=0.5113379781882526) ,
Value (data=0.5113379704175836) ,
Value (data=0.08489760811997542) ,
Value (data=-0.0745143990115551),
Value (data=-0.8069478831969156) ,
Value (data=0.008301830314252726) ,
Value (data=-0.7523233512119889),
Value (data=-0.3578237664745138) ,
Value (data=0.7523051593887048) ,
Value (data=-0.9315255372557891),
Value(data=-0.8082132658152666) ,
Value (data=0.5113379797997366) ,
Value (data=-0.0032062806027131152) ,
Value (data=-0.08441484960807619) ,
Value (data=0.6400307244885958) ,
Value(data=-0.7944714485446122) ,
Value (data=-0.3132568721771691),
Value(data=-0.8416019240126361),
Value (data=0.1851128921994444) ,
Value (data=0.7523055491588815) ,
Value (data=0.16296506802657443) ,
Value (data=0.6157196745700914) ,
Value (data=-0.3132323492984473) ,
Value(data=-0.5902555181350494) ,
Value (data=-0.6742591108261897) ,
Value (data=0.7523055491901379),
Value (data=0.5827759579307711),
Value (data=-0.9429502100952012) ,
Value(data=-0.7522345404954394) ,
Value (data=-0.05919293098025813) ,
Value(data=0.5113368149082986) ,
Value (data=-0.05554372557101371),
Value(data=-0.7523011291803815),
Value (data=-0.5584860593800294) ,
Value(data=-0.7249402167984264) ,

13



Value (data=-0.8416194659410665) ,
Value (data=-0.6742615098097214) ,
Value (data=-0.9465521744386456) ,
Value(data=0.8716017131487845),
Value(data=0.7521137124382034) ,
Value(data=-0.8701220813035121),
Value(data=0.7522515317779896) ,
Value (data=-0.8100815697025662) ,
Value(data=0.5113379797503332),
Value (data=0.5112410060808564) ,
Value(data=-0.9213390635663748) ,
Value (data=0.6241387240767196) ,
Value (data=-0.7524917422457629) ,
Value (data=0.622136919175138),
Value(data=0.5113378117473063),
Value(data=0.7363234138142228) ,
Value(data=-0.7512528103473067) ,
Value(data=-0.36373076401436666) ,
Value (data=0.18481359208097703) ,
Value(data=0.5613798172030012),
Value (data=-0.752090104866937) ,
Value (data=-0.7839430548234217) ,
Value (data=-0.24374822156224446) ,
Value(data=-0.7523383154518689) ,
Value (data=-0.05192059771370694) ,
Value(data=0.7523055491899329),
Value(data=0.4710324973693049),
Value(data=-0.5482401684047341) ,
Value(data=-0.34932535559253),
Value (data=0.4564274849415448) ,
Value(data=-0.8415819328615802) ,
Value (data=-0.5584861499755054) ,
Value(data=0.510822026575943) ,
Value (data=-0.8416192146427229),
Value (data=0.8737956419722532) ,
Value (data=-0.15446190448285183),
Value(data=-0.8574994600651251) ,
Value(data=-0.47287047375278257) ,
Value(data=-0.03763798138832406) ,
Value(data=0.1593090927994636) ,
Value (data=-0.3612768235484027) ,
Value(data=-0.25320446597254237) ,
Value (data=-0.36578430476534707) ,
Value(data=0.5111870953911984) ,
Value (data=-0.8416194659695543) ,
Value (data=0.01757336127249222) ,

14



10

11

12

13

Value (data=-0.48443827158601716) ,
Value(data=-0.5584860458158947) ,
Value (data=-0.4741110781057349),
Value (data=0.6776781641918045) ,

Value (data=-0.00614598892424131) ,
Value (data=-0.8416123667306783) ,
Value (data=-0.09422396507235047) ,
Value (data=-0.44752168490506344) ,
Value (data=0.1851116662608289) ,

Value (data=0.7523055420485438) ,

Value (data=-0.49864579804908604) ,
Value (data=-0.9112952585453536) ,
Value(data=-0.05057648718631836) ,
Value (data=-0.8416182277238314) ,
Value (data=-0.09478720964637219) ,
Value (data=0.7523055481129937),
Value (data=0.626757315790661) ,

Value (data=-0.3133071007926418) ,
Value (data=-0.5600983101893039),
Value (data=0.752305549190352) ,

Value (data=-0.8416194659720978) ,
Value (data=0.23629757700617524) ,
Value (data=0.7376631677073783) ,
Value(data=-0.6743000730182208) ,
Value (data=-0.697903018745952) ,
Value (data=-0.09381303449557063)
Value (data=-0.7380269540468758) ,
Value (data=-0.5598514541428071) ,
Value (data=-0.8416194659672857) ,
Value (data=0.21173372021229414) ,
Value (data=-0.30721995070056907) ]

-

import random
import math

def f(x,y,z):

return 0.004*x**2 + 0.07*y*x - z + random.gauss(0, 1)

X = 1[I

y = [

for i in range(500):
X.append([random.uniform(-50,50) for
y.append (f (X[1] [0] ,X[1] [1],X[i][2]))

print (y)

15

in range(3)])



14

15

16

17

18

19

20

21

22

ann = MLP(3, [8,8,1])

for i in range(100): # Our code will do 100 epochs of training
y_pred = [ann(x) for x in X] # Our model only accept one prediction per time
print(y_pred[0], print(y[0]))
loss = sum((pred-origin)**2 for pred,origin in zip(y_pred, y))

loss.backward() # Calc of gradients

[-35.00006447265811, 14.452764707564574, -28.61126541419166, 16.42604207222155, 19.2540434
-35.00006447265811

Value(data=0.9476197044921958) None

-35.00006447265811

Value(data=0.9476197044921958) None

-35.00006447265811

Value(data=0.9476197044921958) None

-35.00006447265811

Value(data=0.9476197044921958) None

16



